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Geometry images resample meshes to represent them as texture for efficient GPU processing by forcing a regular parameterization that often incurs a large
amount of distortion. Previous approaches broke the geometry image into multiple rectangular or irregular charts to reduce distortion, but complicated the
automatic level of detail one gets from MIP-maps of the geometry image.

We introduce triangular-chart geometry images and show this new approach better supports the GPU-side representation and display of skinned dynamic
meshes, with support for feature preservation, bounding volumes, and view-dependent level of detail. Triangular charts pack efficiently, simplify the elimination
of T-junctions, arise naturally from an edge-collapse simplification base mesh, and layout more flexibly to allow their edges to follow curvilinear mesh features.
To support the construction and application of triangular-chart geometry images, this article introduces a new spectral clustering method for feature detection,
and new methods for incorporating skinning weights and skinned bounding boxes into the representation. This results in a tenfold improvement in fidelity
when compared to quad-chart geometry images.
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1. INTRODUCTION

Traditional view-dependent LOD representations based on mesh
simplification [Xia and Varshney 1996; Luebke and Erikson 1997;
Hoppe 1997] rely on random-access mesh traversal with poor cache
coherence. Geometry images [Gu et al. 2002] support efficient
LOD display [Losasso and Hoppe 2004; Ji et al. 2005; Niski et al.
2007] by storing the mesh as a MIP-mapped texture image with
better GPU cache coherence, but flattening a mesh into a single
geometry image can create severe parametric distortion. Multi-
chart geometry images [Sander et al. 2003] improve this distortion
with feature-sensitive clustering, but its irregular chart boundaries
complicated coarser levels of LOD downsampling. Rectangle-chart
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geometry images [Purnomo et al. 2004; Carr et al. 2006; Yao and
Lee 2008] pack and down-sample better, but their rectangular shape
constraint creates charts that cross prominent mesh feature lines
and obfuscate these features at coarser levels of detail.

Triangle-chart geometry images offer a single solution that com-
bines the cache coherence of geometry images, the lower dis-
tortion of multiple charts, the straightforward downsampling of
a simple chart shape, and a feature-preserving layout. The tri-
angle’s barycentric coordinates uniformly sample each chart, and
provide multiple levels of downsampling when the initial number
of samples along the triangle edges is a power of two. Triangle
charts benefit from a more flexible simplicial layout that, when
compared to rectangle charts, avoids T-junctions, better supports
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Fig. 1. Our method builds triangle-chart geometry images for feature-
preserving LOD representation of both static and skinned meshes. It obtains
a base complex and triangular charts from an original mesh using mesh sim-
plification. The packed triangular geometry images are shown in the bottom.

feature-sensitive boundary alignment, and packs (in pairs) just as
easily and efficiently into an atlas. Our results show that triangle-
chart geometry images represent meshes with about 10% of the
error incurred by rectangular chart approaches.

We support the feature-preserving capabilities of triangle-chart
geometry images with new algorithms for detecting feature curves
in meshes and for organizing triangle charts to lie between these
curves to preserve these features across levels of detail. We first
detect features globally using a novel spectral face clustering on a
mesh curvature estimate that identifies feature curves along clus-
ter boundaries near local curvature maxima. A modified edge-
collapse simplification forms vertex clusters within these feature
curve boundaries. Each vertex cluster is parameterized onto a tri-
angular domain and uniformly resampled to form a triangular ge-
ometry image.

We also augment geometry images with new support for the dy-
namic meshes found in modern videogames animated by linear-
blend skinning deformations. In addition to the (rest-pose) vertex
positions, we store vertex skinning weights in the geometry im-
age, and downsample both for dynamic mesh LOD. To maintain
spatiotemporal features at coarser levels of detail, we incorporate
sequences of deformation transforms into the feature preservation
metric to yield a space-time metric that clusters vertices with sim-
ilar frame-to-frame transformations. This approach yields better
shaped clusters and more accurate skinning than do hierarchical
clustering [Wang et al. 2007] or SMA (Skinning Mesh Animations)
[James and Twigg 2005]. We also surround each skinned triangle
chart with an oriented bounding box whose corners are themselves
skinned to deform with its contents. The screen size of a projected
bounding box selects the optimal LOD resolution for each triangu-
lar chart.

In summary, the contributions of this article include: (1) a new
type of triangular geometry images with feature-preserving ca-
pabilities, (2) a spectral clustering method for effective curvilin-
ear feature detection and deformation discontinuity detection, (3)
GPU-based multiresolution geometry image rendering for static
and skinned meshes. The result is a view-dependent LOD repre-
sentation for both static and skinned meshes stored and rendered
entirely on the GPU to maximize throughput. It enables the conve-
nience of geometry images to serve as a high-performance choice
for representing characters, objects, and scenes in games and virtual
environments.

2. RELATED WORK

The original geometry-image approach [Gu et al. 2002] cut a mesh
into a single contractible component, mapped it onto a rectangu-
lar parametric domain, and imposed a regular mesh sampling, of-
ten with high distortion. Multichart geometry images with irregular
[Sander et al. 2003] or later rectangular [Purnomo et al. 2004; Carr
et al. 2006] boundaries reduced distortion by decomposing the in-
put mesh into multiple pieces, each individually parameterized and
resampled. (Alternatively, Yao and Lee [2008] improved fidelity by
subdividing a geometry image after parameterization into square
charts sampled at different rates.) The construction of charts can
utilize any of a number of mesh decomposition or clustering algo-
rithms [Sander et al. 2001; Lévy et al. 2002; Liu and Zhang 2004;
Zhou et al. 2004; Julius et al. 2005; Yamauchi et al. 2005], but
they produce either rectangular or irregularly shaped charts. Mu-
tiresolution analysis on triangle mesh [Eck et al. 1995] can be ap-
plied here to generate triangular charts. However, it is not straight-
forward to integrate our feature-preserving scheme into its chart
generation method. MAPS [Lee et al. 1998] constructed and pa-
rameterized a base domain of triangular charts, which serves as a
working parameterization for our construction of feature-sensitive
well-shaped triangle charts for geometry images, as described in
Section 5.

Mesh Colors [Yuksel et al. 2008] uses barycentric coordinates
to regularly sample textures over every triangle in an input mesh,
packing the texture signal into a 1D texture stream. Their approach
focuses on atlas-free storage of a color texture whereas we focus on
a geometric representation for view-dependent LOD whose atlas
derives from a simplified base domain.

Several static mesh segmentation algorithms align cluster bound-
aries with feature lines [Lévy et al. 2002; Lee et al. 2005; Zhang
et al. 2005]. They use curvature estimates to detect fragmented fea-
tures, and connect these fragments into feature lines, but this gap
filling can be ambiguous and sensitive to noise. Spectral clustering
overcomes this sensitivity with a global approach to mesh segmen-
tation [Fowlkes et al. 2004; Liu and Zhang 2004]. We improve this
approach with new metrics that better detect crest lines and sharp
points by processing the dual mesh in Section 4.2. We remove par-
tial cluster boundaries that do not lie closely to local curvature max-
ima whereas other similar approaches handle these regions with
flexible “fuzzy” boundaries [Katz and Tal 2003].

Clustering and simplification for deforming meshes has been
less explored. The quadric error metric [Garland and Heckbert
1997] can be extended [Mohr and Gleicher 2003; DeCoro and
Rusinkiewicz 2005] for simplification of a mesh with multiple de-
formed poses into a pose-independent simplified mesh. Hierarchi-
cal face clustering has been performed in Kircher and Garland
[2005] to achieve pose-dependent simplification with higher visual
quality for precomputed mesh deformation sequences. Hierarchical
clustering [Wang et al. 2007] and a mean shift algorithm [James and
Twigg 2005] can both yield pose-independent face clusters for de-
forming meshes, but Section 4.3 shows that our spectral clustering
better localizes deformation discontinuities and preserves spatial
coherence. To our knowledge, there is no previous work dealing
with level-of-detail representation and control for skinned meshes
and this article is the first piece of work that applies multiresolution
geometry images to skinned meshes.

Rendering throughput in modern GPUs implies that it is more
important to optimally feed the graphics pipeline than fine-grain
LOD adaptivity. Recent simplification-based LOD models focus
on coarse-grained mesh resolution changes to minimize CPU us-
age and maximize GPU triangle throughput [Cignoni et al. 2004;
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Borgeat et al. 2005; Hwa et al. 2005]. Our triangle-chart geome-
try image representation aligns well with this motivation and can
maximize the GPU throughput of LOD models. First, it implicitly
encodes vertex connectivity, avoiding the need to find and convert
tri-strips. Second, the regular sampling of triangle-chart geometry
images simplifies the stitching of neighboring patches differing by
multiple levels of detail, whereas others allow only a single level
difference, for example, Borgeat et al. [2005]. Third, it combines
geometry and texture into a single multiresolution representation,
avoiding the wasted storage of texture coordinates for every chart
in video memory.

3. OVERVIEW

Our method produces triangular patches for an input mesh with
patch boundaries following important geometric features on the
mesh. These patches are converted to geometry images and used
for dynamic level-of-detail rendering. The overall pipelines of our
method for the preprocessing and runtime stages are summarized
in Figure 2.

Preprocessing. The first part of preprocessing extracts coher-
ent curvilinear features on the mesh. For static meshes, curvilinear
features in high curvature areas are detected. For skinned meshes,
deformation discontinuities are also detected as additional features.
These curvilinear features serve as constraints in a later stage where
triangular patches are formed. Feature detection starts with spec-
tral clustering [Fowlkes et al. 2004; Liu and Zhang 2004] using a
similarity matrix based on curvature or deformation gradients. The
boundaries of these clusters serve as feature candidates. A subset
of these feature candidates are retained as detected features. Since
these initial features tend to be jagged, we further apply the graph-
cut algorithm to refine the retained features.

The second part of preprocessing generates triangular patches
for the input mesh. We perform extreme simplification to the input
mesh to obtain a base complex with a very small number of trian-
gles, each of which serves as the parametric domain of a triangular
region over the input mesh. Thus the complete base complex serves
as a global parametric domain for the entire input mesh. Curvilin-
ear features detected from the previous stage are used as constraints
in the simplification process. During mesh simplification, we apply
MAPS [Lee et al. 1998] to figure out which triangle in the simpli-
fied mesh should be used as the parametric domain of a vertex in
the input mesh as well as the barycentric coordinates of this vertex.
Triangular patches on the input mesh can be obtained by mapping
the edges of the base complex onto the input mesh. The obtained
triangular patches on the input mesh are then sampled and packed
into triangular geometry images. A mip-map hierarchy for each ge-
ometry image is also built to represent different levels of details.

Runtime LOD Rendering. At runtime, a suitable level of de-
tail is determined on-the-fly for each patch based on its screen
projected area. An Oriented Bounding Box (OBB) associated with
each patch is used to approximate the projected area. To adapt our
LOD calculation to skinned meshes, we need to dynamically esti-
mate the screen projected area of the bounding box of each skinned
patch. This is achieved by applying skinning to the bounding boxes
as well and computing a set of bone influence weights for every
corner of the OBBs. Once the suitable detail levels are obtained, we
render each patch at its corresponding level of detail on the GPU
using its geometry image. To avoid cracks along patch boundaries,
we apply automatic stitching on the GPU along boundaries of ad-
jacent patches with different geometry image resolutions.

Fig. 2. The pipelines of our method in the preprocessing and runtime
stages.

Notation. We define a 3D mesh M = (V, E, F) as a set of 3D
positions V = {vi = (xi , yi , zi )}, mesh edges E (a set of vertex
pairs), and triangle faces F (a set of vertex triples). To perform
spectral face clustering and face-oriented graph-cut, we also define
the dual graph G = (F, D) of a mesh M, where F is the set nodes
in the dual, one for each face in M, and D is the set of graph edges,
each denoted by a pair of face nodes ( fi , f j ) from F. Note that
an edge in the dual graph can connect pairs of faces that are not
adjacent to each other in the mesh. A path P = (vi , v j ) is defined
as a set of connected mesh edges E p ⊂ E that connect vi and v j .
Given a skinned mesh with nb bones and na frames of animation,
we denote the set of bone transformations at frame k as Tk

b and a
set of skinning weights wb

i , where 1 ≤ b ≤ nb, 1 ≤ k ≤ na, 1 ≤
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i ≤ |V | and
∑nb

b=1 wb
i = 1 for each vertex. The skinned position of

vi at frame k becomes vk
i = ∑

b(wb
i Tk

b)vi .

4. CURVILINEAR FEATURE DETECTION

We would like to preserve perceptually salient corner and curvi-
linear features during multiresolution resampling of the original
mesh by aligning chart boundaries with such features. We explic-
itly detect a sparse set of salient corner and curvilinear features
before chart generation. A common approach to feature line de-
tection would apply local criteria first to detect fragmented feature
points, followed by a gap-filling step to connect them. Since lo-
cal feature detection is noisy, feature connection can be ambiguous
and error-prone. In addition, in this process, salient feature lines
do not necessarily have a higher priority to be discovered. In this
section, we take a top-down approach instead by performing global
spectral clustering with a new metric which takes into account lo-
cal feature measurements. Salient feature lines are discovered as
partial boundaries of the resulting triangle clusters. Our approach
works very well with both static and deforming meshes. The reason
that we use spectral clustering only for feature detection but not for
chart generation is that it gives rise to irregularly shaped clusters
not suited for triangular geometry images.

4.1 Spectral Clustering

Let G = (U, E) be a weighted graph, where the set of nodes, U =
{u1, u2, ..., un}. An edge, (ui , u j ) ∈ E , has a weight w(ui , u j ) de-
fined by the similarity between the location and attributes of the two
nodes defining the edge. The idea is to partition the nodes into two
subsets, A and B, such that the following disassociation measure,
the normalized cut, is minimized:

Ncut(A,B) = cut(A,B)

cut(A,U)
+ cut(A,B)

cut(B,U)
, (1)

where cut(X ,Y) = ∑
s∈X ,t∈Y w(s, t) is the total connection from

nodes in X to nodes in Y .
To compute the optimal partition based on the preceding mea-

sure is NP-hard. However, it has been shown [Shi and Malik 2000]
that an approximate solution may be obtained by thresholding the
eigenvector corresponding to the second smallest eigenvalue of the
normalized Laplacian L, which is defined as

L = D−1/2(D − W)D−1/2 = I − D−1/2WD−1/2, (2)

where D is a diagonal matrix with D(i, i) = ∑
j w(ui , u j ), and W

is the weight matrix with W(i, j) = w(ui , u j ).
Extensions to multiple groups may be realized through the use

of multiple eigenvectors [Fowlkes et al. 2004]. Let us first take the
Ne largest eigenvalues, λ1, . . . , λNe , of D−1/2WD−1/2 and their as-
sociated eigenvectors, e1, . . . , eNe . Let Me be a matrix with its i th
column set to ei/

√
λi . The rows of Me define an embedding of

the original graph nodes into the Ne-dimensional space. The un-
derlying intuition is that pairwise distance in this Ne-dimensional
space reflects the pariwise similarity defined by W. Thus, partition-
ing the original graph nodes into multiple groups according to their
pairwise similarity may be accomplished by running the K-means
algorithm in this embedding space, which is referred to as spec-
tral clustering. The Nyström method was applied in Fowlkes et al.
[2004] to process large datasets with sparse sampling.

4.2 High Curvature Feature Extraction

We extract both feature lines and feature points using the process
diagrammed in Figure 3.

Curvilinear feature detection. For static meshes, we measure
features with local curvature estimates [Kalogerakis et al. 2007].
A set of fragmented crestline segments are then obtained by find-
ing local extrema of curvatures [Stylianou and Farin 2004]. While
it is tempting to directly use these crest lines as our feature lines,
they are too noisy to represent large scale features. Instead we take
these crest line segments into consideration when constructing the
similarity matrix W for spectral clustering. Specifically, given a
dual graph G = (F, D) with n f faces and nd edges, we define
a new metric for the similarity term w(i, j) in W over each edge
d = ( fi , f j ) as

w(i, j) = β exp

(
−|κi | + |κ j |

σκ

)
exp

(
−dist( fi , f j )

σd

)
, (3)

where β is a scaling factor to emphasize the existence of crest line
segments between two faces (β = 0.1 if there is a crest line be-
tween fi , f j and β = 1.0 otherwise), κi indicates the estimated
mean curvature at fi , and σκ is the standard deviation of the abso-
lute mean curvatures among all faces, dist( fi , f j ) is the geodesic
distance between fi and f j measured as the total length of the dual
edges, and σd is the standard deviation of pairwise geodesic dis-
tance between faces. Since spectral clustering can be applied on
a general graph without a valid mesh structure, we also add addi-
tional graph connections in the dual graph for nearby nonadjacent
faces according to their pairwise distances dist( fi , f j ) defined be-
fore. In our implementation, we add an additional dual edge be-
tween fi , f j if dist( fi , f j ) < 2 ¯dist, where ¯dist is the average dis-
tance between two adjacent faces. Thus we increase the valence
of each dual node to improve the results from spectral clustering.
This similarity matrix for spectral clustering favors clusters with
boundaries along crest line segments or high curvature regions on
the mesh.

Other mesh clustering schemes, such as the one presented in
Variational Shape Approximation (VSA) [Cohen-Steiner et al.
2004], can also be used for detecting high curvature features. VSA
locally grows triangle clusters according to normal variations. It
focuses on approximating the shape of the original mesh with flat
regions, while our spectral clustering method focuses on detecting
high curvature features on the mesh. The model shown in Figure 5
is used to demonstrate the difference between the two methods.
This model has a narrow ridge on the plane, which should be re-
garded as a curvilinear feature. The two methods make different
choices according to their clustering criteria. VSA chooses to bet-
ter approximate the overall shape by dividing the hemisphere into
two clusters, while our method chooses to align a cluster bound-
ary with the ridge. In terms of shape approximation, VSA pro-
duces better results. However, spectral clustering is preferred in
this article because we would like to detect salient curvilinear
features.

Once we have spectral clustering results, as shown in
Figure 3(d), the cluster boundaries serve as initial candidates of
curvilinear features. Although these boundaries roughly follow
high curvature features, some of them might be jagged while others
may not align precisely with local curvature maxima. Thus further
improvement is necessary to identify accurately localized features.
We refine initial cluster boundaries by applying a graph minimum
s-t cut [Katz and Tal 2003] with different edge weights. We thicken
each initial boundary to a boundary region and form a dual graph
G using faces within the region as nodes. The actual size of this
boundary region could affect the results of refined boundaries. If
the size is too large, the new boundary could deviate to some high
curvature regions far away from the current boundary. On the other
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(a) (b) (c) (d) (e) (f)

Fig. 3. The overall process of our feature extraction method. Given a mesh in (a), we first robustly estimate its per-vertex curvatures, as shown in (b). The
initial crest lines in (c) are noisy and disconnected. Spectral clustering is applied on the mesh based on curvature similarity to extract a set of clusters shown
in (d). We only keep cluster boundaries with high curvature and refine them using a graph-cut algorithm to obtain the final feature lines in (e). A sparse set of
corner points are also detected in high curvature regions as shown in (f).

AfterBefore

Fig. 4. The original feature lines from spectral clustering appear jaggy
and may not align well with real features on the mesh. After applying the
graph-cut algorithm, the refined feature lines become smoother and better
localized.

hand, if the size is too small, there will be little room for graph-cut
refinement. In our experiment, we found that setting the boundary
region to cover 10% of the triangles closest to the cluster boundary
works well for all our examples. The weights on graph edges are
computed using a combination of edge length and absolute mean
curvature. Specifically, we define the edge weight g(i, j) between
graph nodes fi , f j as

g(i, j) = β|ei j | exp

(
−|κi | + |κ j |

σκ

)
, (4)

where ei j is the edge shared by fi and f j in the original mesh and
β, κ are defined similarly as in (3). As a result, we favor the shortest
path that passes through high curvature regions. This local refine-
ment makes cluster boundaries smoother and better aligned with
local curvature maxima, as shown in Figure 4.

After refinement, we break cluster boundaries into nonbranching
segments by finding junctions with more than two incident bound-
aries. Since cluster boundaries are closed curves, some boundary
segments may not lie near features, serving only to close the loop.
We discard such segments by checking whether the average magni-
tude of mean curvature along a segment is smaller than a predefined
threshold, which is set to the average magnitude of the largest 30%
mean curvatures at all vertices. The remaining segments become
the detected curvilinear feature lines. The setting of this threshold
affects how many feature line segments will be used as constraints
in the chart generation stage. If we set the curvature threshold too
small, we may include unimportant boundaries as features. This
would impose unnecessary constraints on chart generation, but not
necessarily affect reconstruction errors.

Corner feature detection. In addition to curvilinear features, we
also identify a sparse set of feature points that are important for

Curvature VSA Our Method

Fig. 5. Illustration of the difference between our spectral clustering and
Variational Shape Approximation (VSA) [Cohen-Steiner et al. 2004]. The
testing model has a high curvature feature, a narrow ridge, on the plane.
VSA chooses to better approximate the overall shape by dividing the hemi-
sphere into two clusters. Our method is better at feature detection and
chooses to align a cluster boundary with the ridge.

preserving sharp corners such as horns or finger tips. As shown in
Figure 3(f), such corner points typically belong to high curvature
regions. These points will also act as constraints in the chart gener-
ation process to ensure that the resulting base complex adequately
covers these feature regions. We choose corner points as the ver-
tices with the maximum absolute mean curvature in a local neigh-
borhood. The size of this neighborhood is typically set to from 7 to
10 rings. The precise localization of these points is not crucial be-
cause the purpose of corner detection is to improve sampling rate
by geometry images in high curvature regions. For each detected
corner point, we further check whether its absolute mean curvature
is sufficiently large and only keep the highest 10% as feature points.
The same parameter setting works well for all our testing models
and we achieve high reconstruction accuracy even when the corners
are not positioned very accurately.

4.3 Deformation Discontinuity Identification

For dynamic meshes, we also detect deformation discontinuities
and incorporate them as additional features for triangle chart gen-
eration. Deformation discontinuities can also be viewed as poten-
tial high curvature features since, at some frames of a deformation
sequence, transformations of triangles across these places can dif-
fer significantly and high curvature features can form along these
discontinuities. Deformation discontinuities can also aid the mesh
skinning process, which needs to extract a set of proxy bones from
a mesh deformation sequence [James and Twigg 2005].

In this section, we introduce a novel metric for detecting defor-
mation discontinuities using spectral clustering. We start by com-
puting the deformation gradient �k

i [Sumner et al. 2005] for each
face fi at frame k, and use them in the formulation of the similarity
matrix Wb in spectral clustering. We define the similarity between
two faces according to the similarity of their deformation gradients
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Fig. 6. Triangle clusters and their boundaries resulted from our new metric
for spectral clustering using deformation gradients from the BALLET mesh
animation.

in all frames as follows:

wb(i, j) = exp

(
−

∑na
k=1 ‖�k

i − �k
j ‖

naσ�

)
exp

(
−dist( fi , f j )

σd

)
, (5)

where na is the number of frames, and σ� is set to the standard
deviation of deformation gradients across both spatial and tempo-
ral domains. The cluster boundaries formed using this criterion are
also saved as feature lines for chart generation. An example of such
feature lines detected as deformation discontinuities is shown in
Figure 6. The reason for adding the deformation discontinuity as
feature lines is to make sure the resulting triangular patches do
not cross bending joints such as the elbow of a bending arm. If
they were not added, the resulting geometry images could still well
represent the static mesh, but would not be sufficiently accurate at
lower resolutions during a skinned animation. This is because when
a joint is being bent, a flat region around the joint in the static mesh
may dynamically become a high curvature region that demands bet-
ter sampling. Note that we do not break apart the cluster boundaries
this time because subsequent proxy bone extraction requires closed
regions.

Once we represent each cluster using one proxy bone, we can
further compute bone transformations and bone influence weights
in a way similar to previous methods that solve least-squares prob-
lems [James and Twigg 2005].

While previous work such as mean-shift clustering [James and
Twigg 2005] or hierarchical clustering [Wang et al. 2007] can also
effectively learn a set of proxy bones, certain drawbacks exist. As
shown in Figure 7, mean-shift clustering cannot always find a suit-
able cluster for each face and might result in few and sparse clusters
for animation sequences with extreme deformations. On the other
hand, hierarchical clustering adapts a bottom-up scheme to greed-
ily merge nearby clusters with similar transformations. While this
yields a valid cluster membership for each face, it might fail to rec-
ognize global deformation characteristics since only local merging
is performed at each step. Therefore it usually results in irregularly
shaped clusters even for simple and well-behaved deformation such
as bending. As shown in Figure 7, our method works better in iden-
tifying the deformation characteristics from bending and results in
triangle clusters with a more regular shape. The advantage of our
method lies in that it is a global clustering technique that better pre-
serves spatial coherence. These properties make it more robust in
learning the set of proxy bones for mesh animations with extreme
deformations.

5. TRIANGULAR GEOMETRY IMAGE
CONSTRUCTION

When an input mesh is converted to a set of triangular geometry
images, there are two constraints we would like to impose for trian-
gular chart generation. First, each chart boundary should be shared

Hier. Clustering Our Method SMA Our Method

Fig. 7. A comparison of our spectral clustering method with hierarchical
clustering [Wang et al. 2007] and mean-shift clustering [James and Twigg
2005] on two animation sequences, bending and horse collapsing, respec-
tively. For the horse model, mean-shift clustering fails to assign a large
number of triangles (shown in black) to any clusters due to their highly
deformable nature. Our method results in more regular cluster shapes and a
spatially more coherent assignment of the triangles to the clusters.

by exactly two adjacent charts without T-junctions. This constraint
makes it straightforward to construct seamless atlases for geome-
try images and simplifies boundary stitching at the rendering stage.
Second, chart boundaries should be aligned with detected curvilin-
ear features. This constraint is important for level-of-detail render-
ing since it helps preserve features even at lower resolutions. We
therefore design our chart generation process to enforce these con-
straints. Detailed description of feature detection can be found in
Section 4.

5.1 Triangular Patch Generation

Many patch formation methods rely on cluster growth, but growing
triangular clusters that everywhere share boundaries with exactly
three other clusters would be difficult. Our triangle patch genera-
tion is based on mesh simplification and the progressive parameter-
ization provided by MAPS [Lee et al. 1998]. We parameterize the
original mesh over a base complex which is an extremely simplified
version of the original mesh, and then compute patch boundaries
on the original mesh to create triangular patches there. Every patch
boundary on the original mesh corresponds to an edge in the base
complex.

As shown in Figure 8, we simplify the input mesh to a base com-
plex Ms = (V s, Es, Fs) through series of “half-edge collapses”
that use one of the edge’s two original vertices as the new vertex
position [Garland and Heckbert 1997]. Thus V s ⊂ V . We pre-
vent the collapse of any edge that connects a feature vertex with a
nonfeature vertex, which ensures the base domain triangles do not
cross feature curves and do not absorb feature points, while allow-
ing feature curves themselves to be simplified. During mesh simpli-
fication, we progressively build a parameterization of the original
mesh using MAPS [Lee et al. 1998].

MAPS is a global parameterization method that parameterizes
an original mesh over a simplified base complex. Every vertex in
the original mesh is assigned a membership to a base domain tri-
angle f s ∈ Fs as well as barycentric coordinates (α, β, γ ) with
respect to f s . Therefore vertices assigned to the same base domain
triangle share the same coordinate frame, as shown in Figure 8(c).
Moreover, vertices assigned to two adjacent base domain triangles
f s
1 , f s

2 ∈ Fs can also be expressed in the same coordinate frame
by flattening f s

1 and f s
2 onto the same plane. This parameterization

will become very useful when mapping a base domain edge to a
path on the original mesh. For detailed steps of building MAPS pa-
rameterization, please refer to the original paper [Lee et al. 1998].

Once we have the global parameterization from MAPS, patch
generation becomes a straightforward process. As shown in
Figure 9, a base domain edge es = (vs

1, vs
2) ∈ Es is shared by
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(b)(a)

(d)(c)

Fig. 8. The overall process of triangle patch generation. Start from an in-
put mesh in (a), we first perform mesh simplification to generate a base
mesh in (b). During simplification, we apply MAPS [Lee et al. 1998] to
progressively parameterize the input mesh over the base mesh, as shown in
(c). We utilize this parameterization to define a path in a flattened mesh for
each base domain edge, as shown in (d). These paths are mapped onto the
original mesh to define the boundaries of triangle patches.

Fig. 9. Overview of path generation. Every edge es = (vs
1, vs

2) in the base
mesh (left) has a corresponding path P = (v1, v2) in the original mesh
(right). To generate such a path, we flatten a local region on the original
mesh and intersect es with triangles in the flattened region. A straight path
from vs

1 to vs
2 is traced by inserting Steiner vertices at the intersections (mid-

dle). This path is mapped back to the original mesh to form a path between
v1 and v2.

two base triangles f s
A and f s

B , which can be unfolded to a planar
quadrilateral with es being one of its diagonals. The part of the
original mesh parameterized over f s

A and f s
B can be flattened onto

the same planar region. We collect the set of triangles Fe ∈ F from
the original mesh that intersect with es in this flattened configura-
tion. Tracing a path between vs

1 and vs
2 in the flattened mesh can be

achieved by inserting Steiner vertices at those intersections. This
is similar to previous work for tracing a path on a polygonal mesh
[Kraevoy et al. 2003; Kraevoy and Sheffer 2004; Schreiner et al.
2004]. This path determined by es is finally mapped back to the
original mesh to define a path between v1 and v2.

When building the MAPS parameterization, we detect and fix
any triangle flips in the parametric domain [Lee et al. 1998] to en-
sure that a straight line in the parametric domain always maps to
a topological line in the original mesh. Therefore the preceding
method guarantees to produce a valid path for each base domain

Without Features With Features

Fig. 10. Patches generated without feature constraints might not align their
boundaries well with high curvature regions. Therefore the resulting recon-
struction has more numerical and visual errors in these regions, such as the
ears on the bunny.

edge. The MAPS algorithm can also integrate feature-related con-
straints into the parameterization to ensure a traced path is aligned
with a feature curve [Lee et al. 1998]. Therefore a feature edge in
the base complex can be mapped trivially to the corresponding fea-
ture curve on the original mesh.

Figure 1 shows a base complex and triangular patches from an
original mesh using mesh simplification. The packed triangular ge-
ometry images are also shown in the bottom. Figure 10 validates
how well patch generation preserves features by comparing the re-
construction quality with and without feature constraints. Ordinary
simplification can obscure some features, such as the ears, which
directly affects their sampling rate and can cause both numerical
errors and visual artifacts in the geometry image representation.

5.2 Patch Parameterization and Packing

For each triangular patch, we parameterize it onto a 2D triangular
domain by fixing its boundary onto the edges of a right triangle. We
apply the parameterization algorithm in Floater [2003] to ensure
no triangles flip in the embedding. The resulting parameterization
is then resampled onto a regular grid within the right triangle with
2dmax +1 samples along every edge. Since each patch may have dif-
ferent geometric complexity, we determine a maximum resolution
level dmax for a patch according to its size and curvatures. Specifi-
cally, we set dmax to be proportional to the curvature weighted sum
of face areas of this patch. Trivially packing each single patch into
its square bounding box would be a waste of space since it only
occupies about half of the bounding box.

An intuitive way to improve packing efficiency is to exploit patch
adjacency by packing pairs of neighboring patches into a single
square image. Since two adjacent patches share the same geometric
information along their shared boundary, a single shared boundary
can be stored along the diagonal pixels in the image. One drawback
of this method is that there will be leftover patches which do not
have any neighboring patches to pair with. Therefore we need to
allocate more space for these patches than necessary as they have
to be packed individually. Moreover, if two adjacent patches have
different maximum resolutions, we have to allocate a square region
sufficiently large for the higher-resolution patch to pack both of
them together. Therefore this method is still suboptimal in terms of
spatial efficiency.

Therefore we have chosen to pack two triangular patches that
are not necessarily adjacent into a rectangular image of size (2dh +
2) × (2dh + 1), where dh represents the higher resolution of the two
patches, for best spatial efficiency. The rectangular shape is due
to the fact that pixels along the diagonals are from two separate
patch boundaries and both boundaries need to be preserved. In this
scheme, we maintain a sorted list of patches based on their max-
imum resolution, and always pack a pair of patches with closest
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maximum resolutions together. We take special care when building
a geometry image pyramid to ensure that the downsampling filter
only considers pixels from the same patch. This packing technique
is similar to the schemes originally designed for texture atlases con-
sisting of triangular texture maps [Soucy et al. 1996; Carr and Hart
2002].

Packing skinning parameters. For skinned meshes, we also re-
sample the bone influence weights, originally stored at the ver-
tices, onto the regular grid in a similar manner to geometry resam-
pling. In order to improve runtime efficiency, we only keep the four
largest bone influence weights for every grid point and store both
the weights and their associated bone indices. This ensures that the
total storage for resampled weights is fixed and independent of the
total number of bones in the mesh.

6. GPU-BASED LEVEL-OF-DETAIL RENDERING

At runtime, we render each triangular patch in the form of a trian-
gular geometry image. A suitable resolution of the geometry im-
age is determined on-the-fly for each patch according to the pro-
jected screen area of its Oriented Bounding Box (OBB). To further
adapt our LOD selection scheme to a dynamically skinned mesh,
the bounding box of each deformed patch is also deformed before
its screen projected area is used to estimate LOD of the patch. To
avoid cracks along boundaries, we apply an automatic boundary
stitching method to connect adjacent patches with different resolu-
tions in our GPU implementation.

6.1 Level-of-Detail Selection

We use an OBB to approximate the geometry on each patch when
computing its LOD. The projected screen area of the OBB is used
to determine an appropriate resolution for each patch. In order to
compute the projected area of an OBB, only four of the eight cor-
ners of the OBB are transformed to form three new major axes of
the transformed bounding box. Since there are always three adja-
cent faces of the OBB visible, the projected area of the OBB can
be computed with the cross-product of these major axes. However,
this requires precomputing an extra set of bone influence weights
for each corner point of the OBB from bone transformations and
the actual OBB corner vertices in every input deformation sample
data. At runtime, we apply new bone transformations to the OBB
corners and use the deformed bounding box for LOD selection.
Specifically, given a set of corners ci , i = 0 . . . 3 which form the
major axes of an OBB with c0 being the pivoting point, and their
skinning weights wb

i , b = 1 . . . nb, we can compute the projected
area A as

A =
∑
i>k

‖(ĉi − ĉ0) × (ĉk − ĉ0)‖, (6)

where ĉi = Mp

(∑nb
b=1 wb

i Tbci
)

is the screen projection of the
transformed corner vertex ci using the current camera view-
projection matrix Mp . For a static mesh, we simply use ĉi = Mpci
and apply the previous equation to obtain the screen projected area.
Once we obtain the projected area A, we determine the detail level
for this patch according to both the area and its maximum detail
level dmax . Since one higher resolution increases the number of ren-
dered triangles by four times, we compute the current level of detail
d as follows:

d = max(log4 (αA), dmax ), (7)

where α is a scaling factor such that αA0 = 4dmax with A0 equal
to the screen size of the display window. This ensures that the cov-
erage ratio of triangles over pixels is approximately constant at all

Fig. 11. Illustration of our boundary stitching method. (Left) Visualiza-
tion of triangle charts on the mesh. Each color represents a distinct chart.
(Middle) Stitching result along chart boundaries. (Right) Closer view of the
stitching result. Although two adjacent charts have a significant difference
in LOD, the stitching results are guaranteed to be watertight.

detail levels. We implement both the dynamic skinning and LOD
selection processes on the GPU using the CUDA programming en-
vironment and store the results into GPU video memory in prepa-
ration of geometry image rendering at the next stage.

Although it would be more straightforward to implement the pre-
ceding LOD selection on the CPU, the actual performance depends
on the complexity of the LOD computation. For animated meshes,
corners of their bounding boxes need to be skinned and projected to
obtain their approximate screen projected area. This LOD compu-
tation becomes more significant when we perform LOD rendering
for a number of animated characters, each with hundreds of charts.
This computation can be performed much faster on the GPU and
thus motivate our GPU implementation for LOD selection.

6.2 Geometry Image Rendering

Since the multichart mesh geometry datasets generated in our pre-
processing stage are in the form of multiresolution 2D images, they
can be easily stored in the GPU video memory and preloaded as
textures for real-time rendering. Since the latest G80 hardware sup-
ports texture array extension, geometry images at the same resolu-
tion can be stored in the same texture array. This texture array data
organization has effectively reduced the overhead incurred from
calling the OpenGL API functions since the texture binding only
need be performed once for each detail level. Since we precom-
pute all resolutions of geometry images, mip-mapping is disabled
during rendering. Although we use textures for storing geometry
images, they are primarily used as the medium for storage on the
GPU. By turning off automatic texture filtering when accessing ge-
ometry images on the GPU, we access them as 2D arrays instead
of filtered textures.

A set of triangular grids are precomputed at all necessary resolu-
tions and packed as OpenGL Vertex Buffer Objects (VBOs). Each
grid point is associated with a pair of (u, v) texture coordinates.
Since the texture coordinates are independent from the actual ge-
ometry stored in the rectangle textures, they can be reused for dif-
ferent patches. These triangular grids are also stored and preloaded
into the GPU video memory for the rendering pass. During render-
ing, we select a grid resolution corresponding to the chosen LOD
of a patch and directly render it with texture mapping turned on. In
a vertex shader program, the texture coordinates of each grid point
are used to look up vertex positions in a geometry image. Addi-
tional information such as normal vectors, bone influence weights
can also be looked up in a similar manner. The final patch geom-
etry can therefore be rendered in the vertex shader after skinning
transformations have been applied.

6.3 Boundary Stitching

When different resolutions have been chosen for adjacent patches,
cracks will occur at their common boundary. Since adjacent patches
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Fig. 12. Triangular charts and reconstructed meshes at varying levels of detail for a BALLET animation.

Fig. 13. Triangular charts and reconstructed meshes at varying levels of
detail for a BOXING animation.

share the same geometry along their common boundary, we can
perform simple stitching directly on the GPU by moving the ver-
tices on the higher-resolution border to those vertices on the lower-
resolution one. This is done by recalculating the texture coordinates
for grid points on the higher-resolution boundary so that they can be
used to access the texels on the lower-resolution one. With the latest
shader API function texelFetch, we can access the integer texture
coordinates directly within the range (0 . . . w−1, 0 . . . h−1). Given
two patches Pi , Pj with resolution ri = 2n +1, r j = 2m +1, n > m
respectively, new texture coordinates (ū, v̄) can be computed from
the original texture coordinates (u, v) along the shared boundary of
Pi as

ū = u − u mod 2(n−m), v̄ = v − v mod 2(n−m). (8)

In our vertex shader implementation, the edge vertices along each
boundary are identified. The texture coordinates of these vertices
are then modified according to (8) to ensure that the vertex posi-
tions retrieved from the geometry image correctly align with the
adjacent patch.

As shown in Figure 11, the preceding stitching method guaran-
tees no seams along chart boundaries. This is because the bound-
ary vertices of a chart at a lower detail level is always a subset of
boundary vertices of any chart at a higher detail level. However, it
is possible to have triangle flips when detail levels between adja-
cent charts vary significantly. In our results, this rarely happens and
does not generate discernible artifacts.

7. EXPERIMENTAL RESULTS

We have successfully tested our method on both static and deform-
ing meshes. The triangular charts generated with our method and
their reconstruction results can be found in Figures 10, 17, 12, and
13. The results for static meshes are shown in 10 and 17, and those
for deforming meshes are shown in 12 and 13. Timing and statistics
for the preprocessing steps can be found in Table I. The skinning
quality of oriented bounding boxes for triangular charts is shown
Figure 14. Since we also treat deformation discontinuities as fea-
ture lines during chart generation, the resulting charts do not cross

Table I. Statistics and Timing
#Orig. Feature Chart Max. Data

Examples Tris Time Time #Charts Res. Size

V2 8K 0 min 1 min 34 25 0.5 MB
Bunny 70K 2 min 4 min 70 26 5.2 MB
Isis 100K 3 min 6 min 120 26 8 MB
Feline 100K 3 min 9 min 250 26 17 MB
Ballet 350K 5 min 19 min 250 26 42 MB
Boxing 250K 5 min 12 min 150 26 24 MB
Grand Canyon 6M 15 min 140 min 840 27 316 MB

All performance measurements were taken from a 3.0GHz Pentium D processor.
“#Orig. Tris.” means the number of triangles in the original mesh, “Feature Time”
means the preprocessing time for feature extraction, “Chart Time” means the time
for chart generation, “#Charts” means the number of resulting triangular charts, and
“Max Resolution” means the maximum resolution for each chart.

Fig. 14. Skinning results of an oriented bounding box for different poses.
The red bounding box is associated with the patch in blue color. The skinned
corners of the bounding box adequately approximate the bounding volume
of the deformed patch at every different pose. Therefore we can use the
skinned bounding box to estimate the projected screen area and thus deter-
mine the detail level for this chart at every pose.

boundaries between regions that are primarily controlled by differ-
ent bones. Thus we can accurately fit the bounding box deforma-
tions and use the skinned bounding boxes when estimating the level
of detail for different poses.

We have compared both numerical errors and visual quality be-
tween triangular geometry images from our method and the quad-
images generated from Seamless Texture Atlas (STA) [Purnomo
et al. 2004]. In our comparison, we use the same number of ver-
tices for both methods and geometry images from both methods
have an equivalent resolution. Numerical errors of the meshes re-
constructed from geometry images are obtained using the method
in Cignoni et al. [1998] which computes the Hausdorff distance
between the original mesh and the reconstructed mesh. As shown
in Figures 15 through 17 and Table II, triangular geometry images
from our method give rise to smaller numerical errors and better vi-
sual reconstruction results, especially around feature regions with
high curvature. We found that STA usually performs adequately for
examples with a simple shape, such as the Isis model. However, for
examples with a high genus or with protruding features, STA tends
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Charts 13K Vertices 200 Vertices

Fig. 15. A comparison between our triangle-chart geometry images (Bot-
tom Row) and quad-chart geometry images [Purnomo et al. 2004](Top
Row). For this simple model, both methods approximate the original mesh
well at a high resolution. However, quad charts tend to have irregular shapes
and produce lower-quality results at lower resolutions.

Charts 67K Vertices 1.1K Vertices

Fig. 16. Another comparison between our triangle-chart geometry images
(Bottom Row) and quad-chart geometry images [Purnomo et al. 2004] (Top
Row) using the Isis model. Although this model has a relatively simple
shape, it also contains sharp edges and semantic features. Both methods can
produce a good reconstruction in a high resolution. However, small artifacts
can be noticed on the back of the head for quad charts due to irregular chart
boundaries. Quad charts also fail to reconstruct important features faithfully
in a low resolution while our method still gives a good approximation.

to produce poor results. Since the face clustering scheme in STA
needs to satisfy multiple topology constraints and perform addi-
tional steps to generate a quadrangulation, the resulting shapes of
the charts are usually much more irregular, which in turn give rise
to more distortion and lower-quality surface reconstruction. While
using adaptive charts could improve its quality, the main source

Charts

130K Vertices

1.5K Vertices

Fig. 17. Another comparison between our triangle-chart geometry im-
ages (Right Column) and quad-chart geometry images [Purnomo et al.
2004](Left Column). With the same number of vertices, the reconstructed
meshes from our method are more faithful to the original mesh than the
quad-chart based method. The feature constraints in our method ensure that
important features are preserved during mesh simplification and result in
higher-quality charts.

of the distortion comes from badly shaped charts during hierarchi-
cal clustering. Moreover, it is more difficult to integrate the fea-
ture constraints in our method into their face clustering scheme.
On the other hand, since the generation of our triangular charts
is based on triangle mesh simplification, it is straightforward to
add feature constraints in the framework and ensure a sufficient
number of charts in the feature regions. As shown in Figure 16,
although quad charts produce a good reconstruction in a high res-
olution, it fails to reconstruct important features faithfully in a low
resolution.

We have also compared the quality of mesh skinning using
proxy bones extracted with spectral clustering. It has been shown
in Section 4.3 that spectral clustering can extract higher-quality
proxy bones faithful to the deformation structure. Here we further
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Table II. Comparison of Reconstruction Error
#Tri. #Tri. Tri. #Quad #Quad. Quad.

Examples Charts Vetices Error Charts Vetices Error

Bunny 70 38K 0.010 42 45K 0.309
Feline 250 130K 0.019 150 163K 0.150
Ballet 250 130K 0.0080 138 150K 0.129
Boxing 140 82K 0.007 78 85K 0.074
Isis 120 67K 0.0036 66 71K 0.0146
V2 34 19K 0.0016 24 26K 0.0022

Comparison of mesh reconstruction errors between our triangular geometry images
and quad-chart-based geometry images [Purnomo et al. 2004].

Ground Truth Hierarchical Cluster Our Method

Fig. 18. Comparison of skinning quality between our method and the hi-
erarchical clustering method in Wang et al. [2007]. Our method produces
results with less artifacts.

Ground Truth SMA Our Method

Fig. 19. Comparison of skinning quality between our method and SMA
[James and Twigg 2005]. Our extracted proxy bones fit the mesh sequence
well while SMA fails in highly deformable regions including the bending
legs.

compare the resulting skin animations between our method and ex-
isting ones. In Figure 18, we show that the skinning results from
spectral clustering are closer to the ground truth without noticeable
artifacts, while the irregular cluster shapes from hierarchical clus-
tering, adopted in Wang et al. [2007], tend to cause more obvious
artifacts. In Figure 19, our result is compared with that from SMA
[James and Twigg 2005] on an extreme horse collapsing sequence.
Since our method produces a clustering that is more spatially co-
herent, the skinning results are more faithful to the ground truth.
On the other hand, SMA tends to produce sparse clusters on highly
deformable meshes and fails to reconstruct the deformation at the
front legs. To clearly show the differences, all results in this com-
parison were generated from skinning only without applying dis-
placement corrections as proposed in James and Twigg [2005].

We have created four large scenes of both static and skinned
models to demonstrate our level-of-detail rendering system. Two
examples of these scenes are shown in Figures 21 and 20. The ren-
dering performance and other statistics of these scenes can be found
in Table III. It can be seen that including a large number of dynam-
ically animated objects using our LOD representation only moder-
ately compromises the rendering performance. Adding additional
unique characters would surely increase the required amount of
video memory and increase the number of rendering passes. How-
ever, since each skinned character requires only about 40MB of
texture memory, as shown in Table I, the current generation GPU
should be able to hold up to tens of distinct high-resolution charac-
ters in its texture memory. If only a few distinctive characters are

Fig. 20. Level-of-detail rendering of a large BOXING crowd.

Fig. 21. Level-of-detail rendering of a terrain navigation using the Grand
Canyon dataset.

Table III. Performance of Our LOD Rendering System
Demo Scene #Total Tri. Avg. Throughput Avg. FPS

Boxing Crowd 15.3M 85M/s 45
Ballet Crowd 12.8M 84M/s 40
Bunnies & Felines 22.1M 105M/s 27
Grand Canyon 6.8M 110M/s 50

Performance of our LOD rendering system on four composed large scenes. The
first two scenes have large collections of dynamically animated meshes using lin-
ear blend skinning, and the last two are static scenes. Performance were measured
from nVidia Geforce 8800GTS 640MB VRAM.

required for a scene, there should be plenty of memory left for other
GPU operations such as texturing and shading.

8. CONCLUSIONS AND FUTURE WORK

In this article, we introduce multichart triangular geometry images
for GPU-based LOD representation of both static and deforming
objects. To fulfill the promises of triangular geometry images, we
have developed a series of algorithms for the detection of curvilin-
ear features, for the construction of such geometry images and their
LOD representations, as well as for GPU-based LOD rendering.
We have also generalized these algorithms for dynamically skinned
meshes.

There are limitations that we would like to address in our fu-
ture work. First, the optimal resolution level is only determined
once per frame for each triangular geometry image. This coarse-
grain scheme does not hinder rendering performance for geometry
images with a reasonable size. However, when the geometry im-
ages become excessively large, a single resolution per patch would
not be sufficiently adapted at the desired level of detail in each lo-
cal surface region. It would be more practical to integrate a dy-
namic subdivision scheme on the geometry images as in Niski et al.
[2007] and render different subimages using different resolutions.
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Although we did not notice any popping artifacts with our cur-
rent scheme, this adaptive subdivision may also help producing a
smoother transition between detail levels. Second, it is assumed in
this work that all the geometry images can be preloaded into the
GPU video memory for maximal rendering throughput. Since most
of models used in our demo required only at most 40MB of video
memory, this assumption will not pose as a problem for rendering a
scene with tens of distinct characters using the current generation of
GPUs. However, for rendering many different characters in a high
resolution, the amount of required video memory might exceed the
capacity of the GPU. In future, we would like to develop an out-of-
core system for gigantic mesh models that cannot fit into the GPU
video memory. A dynamic paging scheme should be designed to
swap geometry images between the video memory, system mem-
ory, and hard drives.
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